
1	
	

On	the	design	of	script	languages	for	neural	simulation	

Romain	Brette	
romain.brette@ens.fr	

(1)	Laboratoire	Psychologie	de	la	Perception,	CNRS,	Université	Paris	Descartes,	Paris,	France	
(2)	Equipe	Audition,	Département	d’Etudes	Cognitives,	Ecole	Normale	Supérieure,	Paris,	France	
	
Running	title:	On	the	design	of	script	languages	

Abstract	

In	neural	 network	 simulators,	models	 are	 specified	 according	 to	 a	 language,	 either	 specific	 or	
based	 on	 a	 general	 programming	 language	 (e.g.	 Python).	 There	 are	 also	 ongoing	 efforts	 to	
develop	standardized	languages,	for	example	NeuroML.	When	designing	these	languages,	efforts	
are	often	focused	on	expressivity,	that	is,	on	maximizing	the	number	of	model	types	than	can	be	
described	and	simulated.	I	argue	that	a	complementary	goal	should	be	to	minimize	the	cognitive	
effort	required	on	the	part	of	the	user	to	use	the	language.	I	try	to	formalize	this	notion	with	the	
concept	of	"language	entropy",	and	I	propose	a	few	practical	guidelines	to	minimize	the	entropy	
of	languages	for	neural	simulation.	

		

	 	



2	
	

Introduction	

In	 neural	 network	 simulators,	 models	 are	 defined	 using	 a	 specific	 language,	 or	 with	 a	 set	 of	
objects	 and	 functions	 defined	 in	 a	 general	 programming	 language,	 e.g.	 Python.	 For	 example,	
NEST	initially	used	a	specific	stack‐based	language	named	SLI,	based	on	reverse	Polish	notation.	
It	 now	 uses	 a	 Python	 interface,	 in	 which	 neuron	 models	 are	 specified	 by	 predefined	 strings	
(Eppler	 et	 al.,	 2009).	 For	 example,	 neuron = nest.Create("iaf_neuron") creates	 an	
integrate‐and‐fire	 neuron	 with	 default	 parameter	 values,	 which	 can	 be	 accessed	 by	 their	
predefined	names.	Neuron	uses	a	high‐level	script	language	named	Hoc,	as	well	as	a	lower‐level	
language	called	NMODL	to	describe	channel	dynamics	(Hines	and	Carnevale,	2000).	It	also	has	a	
Python	 interface	 that	 can	 replace	 the	 Hoc	 language	 (Hines	 et	 al.,	 2009).	 Recently,	 a	 common	
Python	 interface	 to	 several	 simulators	was	 developed.	 In	 this	 language,	 PyNN	 (Davison	 et	 al.,	
2009a),	 the	 following	 instruction	 creates	 a	 group	 of	 20	 integrate‐and‐fire	 neurons	with	 alpha	
synaptic	currents	and	specified	values	for	the	membrane	time	constant	and	capacitance:	

p= Population(20, IF_curr_alpha, cellparams={'tau_m': 15.0, 'cm': 0.9}) 

This	example	is	representative	of	the	approach	taken	by	many	simulation	languages:	there	are	a	
number	of	predefined	models,	with	parameter	values	accessed	by	their	predefined	names.	The	
units	are	also	implicit	(e.g.	tau_m	is	in	ms).	An	exception	to	this	approach	is	the	Brian	simulator	
(Goodman	and	Brette,	2009):	models	are	also	defined	 in	 the	Python	 language,	but	 the	general	
strategy	is	to	minimize	the	number	of	predefined	objects.	This	means	for	example	that	neuron	
models	are	defined	by	differential	equations,	written	in	mathematical	form	with	explicit	units,	a	
threshold	 condition	 and	 reset	 operations.	 A	 recent	 standardization	 initiative,	 NineML,	 uses	 a	
similar	approach	(Raikov	et	al.,	2011).	

What	 principles	 underlie	 these	 design	 choices?	 It	 appears	 that	 the	main	 concern	 is	 generally	
expressivity.	 That	 is,	 a	 language	 is	 designed	 so	 as	 to	 express	 the	models	 that	 the	 simulator	 is	
designed	to	run.	In	general,	 it	 is	fair	to	observe	that	little	attention	is	devoted	to	the	particular	
choice	of	names	 (e.g.	 "IF_curr_alpha")	or	 to	 the	syntax.	The	goal	of	 this	note	 is	 to	draw	the	
attention	of	developers	on	this	underestimated	issue.	

	

Language	entropy	

Often,	we	tend	to	think	that	names	and	syntax	of	functions	are	somewhat	arbitrary.	Indeed,	once	
the	user	knows	it,	or	reads	 it	 in	the	documentation,	any	particular	choice	 is	arbitrary.	But	this	
point	 of	 view	 cannot	be	 right.	As	 a	 thought	 experiment,	 imagine	 that	 your	 scripting	 language,	
which	I	shall	call	Zübkl,	entirely	consists	of	commands	with	seemingly	random	names.	All	these	
names	have	6	letters,	among	the	26	letters	of	the	English	alphabet.	A	typical	Zübkl	script	would	
be:	

lbhyev f(n): 
 peknnx n == 0: 
  kkpden 1 
 kkpden n*f(n-1) 
xghtui f(5) 

	
You	might	have	guessed	that	this	script	defines	the	factorial	function	and	prints	the	factorial	of	5.	
But	you	will	certainly	agree	that	Zübkl	is	a	rather	difficult	language	to	learn,	to	read	and	to	use.	



3	
	

You	will	probably	find	yourself	constantly	consulting	the	documentation	when	writing	a	script.	
Why?	

Take	 the	 example	 the	 print	 command,	which	 is	 called	xghtui	 in	 Zübkl.	When	 I	 designed	 the	
Zübkl	 language,	 I	 chose	6	 letters	at	 random	 for	each	command.	This	means	 that	 for	any	given	
command	 that	 I	 want	 to	 execute,	 I	 need	 to	 remember	 one	 particular	 combination	 out	 of	 all	
possible	combinations	of	6	letters.	Each	letter	represents	26	possibilities	or	log2(26)=4.7	bits,	so	
each	 word	 represents	 28	 bits	 of	 information	 or	 “entropy”.	 Thus,	 we	 may	 consider	 that	
memorizing	the	name	of	the	print	command	has	a	cognitive	cost	of	28	bits.	In	contrast,	consider	
the	 command	 name	 print.	 This	 command	 name,	 in	 many	 languages,	 is	 used	 to	 display	
something	 on	 the	 screen.	 There	 are	 of	 course	 many	 variations,	 but	 they	 are	 generally	 very	
similar.	Naming	it	print	rather	than	xghtui	has	several	advantages:	

 It	is	an	English	word.	Given	that	there	are	about	a	million	words	in	the	English	language,	
restricting	command	names	to	English	words	reduces	the	entropy	of	command	names	to	
about	20	bits	–	with	the	conservative	assumption	that	all	words	are	equally	likely.	

 The	meaning	of	the	name	print	corresponds	to	what	the	command	does.	If	we	assume	
that	 only	 30	 verbs	 (synonyms)	 satisfy	 this	 constraint,	 then	 this	 principle	 reduces	 the	
entropy	to	about	5	bits.	

 The	 command	 could	 also	 be	 written	 Print	 or	 PRINT.	 Enforcing	 lower	 case	 for	 all	
commands	 reduces	 the	 uncertainty,	 for	 a	 benefit	 of	 log2(3)=1.5	 bit	 (assuming	 three	
possibilities	for	the	case).	

 Finally,	this	command	is	named	print	in	almost	all	languages.	Thus,	choosing	to	name	it	
print	rather	than,	for	example,	display,	reduces	the	entropy	to	near	0	bit.	

This	example	highlights	several	principles	which	I	will	comment	in	more	details	below.	In	terms	
of	(informal)	information	theory,	the	idea	is	to	minimize	the	conditional	entropy	of	names	and	
syntax	 in	 the	 language,	 conditioned	 to	 the	 meaning.	 I	 shall	 call	 this	 (loose)	 definition	 the	
“language	entropy”.	By	enforcing	syntax	rules	(whether	explicit	or	implicit)	and	carefully	chosen	
names,	one	can	reduce	language	entropy.	

	

Entropy	of	single	functions	or	objects	

On	the	benefit	of	enforcing	syntax	and	naming	rules	

To	give	a	simple	example,	suppose	we	allow	composite	names	to	be	written	as	compositenames	
or	as	composite_names.	For	a	given	name,	this	adds	two	possible	choices.	Therefore,	the	cost	of	
allowing	this	possibility	is	1	bit,	in	terms	of	entropy.	Therefore,	there	should	be	only	one	allowed	
possibility.	We	could,	however,	imagine	that	the	two	options	are	possible,	if	there	is	a	clear	rule	
for	selecting	between	the	two	options	–	in	this	case	the	entropy	is	0	bit.	More	generally,	naming	
rules	reduce	language	entropy.	Therefore,	it	is	a	good	idea	to	enforce	naming	conventions	such	
as	 the	 PEP‐8	 guidelines	 in	 Python,	 not	 just	 from	 the	 point	 of	 view	 of	 “good	 style”	 but	 simply	
because	it	reduces	language	entropy.	

Short	names	or	long	names?	



4	
	

At	 first	 sight,	 it	 could	 seem	 that	 shorter	names	 are	 easier	 to	 remember,	 and	 therefore	 reduce	
cognitive	 load.	But	 I	would	argue	 that	 the	opposite	 is	 true,	 from	the	point	of	view	of	 language	
entropy.	 The	 problem	 with	 short	 names	 is	 that	 there	 are	 generally	 several	 possible	
abbreviations	 of	 the	 same	 name.	 For	 example,	 in	 Brian,	 a	 group	 of	 neurons	 is	 called	
NeuronGroup.	If	it	were	shorter,	we	could	have	called	it	NrnGroup	or	NeuronGrp.	But	the	sole	
fact	 of	 choosing	 an	 abbreviation	means	 the	 user	 has	 to	 remember	which	 one	 is	 right,	 with	 a	
cognitive	cost	of	1	bit.	

Choosing	a	good	name	

Explicit	naming	still	leaves	many	possibilities	in	general.	A	good	name	should	correspond	to	the	
meaning	of	the	function	or	class,	in	the	most	possible	obvious	way.	There	will	almost	always	be	
several	possibilities	 to	name	a	 given	 concept.	But,	 at	 least,	 one	 simple	 rule	 should	be	 that	 the	
name	 should	 unambiguously	 evoke	 the	 desired	 concept.	 That	 is,	 meaning	 should	 be	 obvious	
from	the	name.	

Named	keywords	

Python	has	become	the	interface	language	of	most	simulators	(Davison	et	al.,	2009b).	It	gives	the	
possibility	 to	 use	 named	 keywords,	 that	 is,	 instead	 of	 passing	 arguments	 as	 a	 list	 with	 a	
predefined	 order	 (x,y,z),	 one	 can	 pass	 them	 explicitly	 as	 (x=2,y=3,z=4)	 or	 (y=3,x=2,z=4),	 for	
example.	Which	choice	minimizes	language	entropy?	

With	the	list	approach,	one	needs	to	remember	the	order	of	arguments,	but	not	their	name.	In	
the	named	keyword	 approach,	 one	needs	 to	 remember	 the	name,	 but	 not	 the	order.	The	best	
choice	 depends	 on	 the	 number	 of	 arguments.	 Indeed,	 what	 is	 the	 entropy	 of	 a	 ranking	 of	 n	
arguments?	 The	 number	 of	 possibilities	 is	 n!,	 therefore	 the	 entropy	 is	 log2(n!).	 This	 grows	 as	
nlog2(n),	 that	 is,	 faster	 than	n.	On	 the	other	hand,	 the	 cognitive	 cost	of	 remembering	n	names	
grows	linearly	with	n.	Therefore,	named	keywords	are	better	when	there	are	many	arguments,	
while	the	list	is	better	for	few	arguments.	Of	course,	in	practice,	it	depends	on	how	obvious	the	
names	and	the	order	are.	As	a	rule	of	thumb,	I	would	suggest	that	named	keywords	are	better	
from	the	third	or	fourth	argument,	while	the	order	is	generally	obvious	for	two	arguments	(and	
one	as	well,	obviously).	

Dynamic	typing	

A	 great	 feature	 of	 the	 Python	 language	 in	 terms	 of	 language	 entropy	 is	 dynamic	 typing.	 This	
means	 that	 the	 type	of	 arguments	of	 a	 function	 is	not	predefined,	 type	 is	only	 checked	at	 run	
time.	Therefore	the	same	function,	that	is,	a	single	name,	can	be	used	with	arguments	of	different	
types.	For	example,	 in	the	Brian	simulator,	one	can	specify	the	synaptic	weights	when	creating	
synapses	between	 two	groups	of	neurons,	using	 the	weights	 keyword.	These	 three	 examples	
below	show	how	dynamic	typing	is	used	to	specify	a	uniform	weight,	a	random	weight	for	each	
synapse,	 or	 a	 weight	 that	 depends	 on	 pre‐	 and	 postsynaptic	 neuron	 through	 a	 user‐defined	
function:	

weight=2*nS 
weight=rand(N,M) 
weight=lambda i,j: exp(|i-j|) 

	



5	
	

Combined	entropy	

In	 the	 previous	 section,	 I	 examined	 language	 entropy	 by	 considering	 isolated	 functions.	 By	
looking	 at	 the	entire	 language,	we	 can	 set	 additional	 rules	 to	minimize	 language	entropy.	The	
idea	I	want	to	expose	here	is	an	elementary	notion	of	information	theory.	The	entropy	of	a	set	of	
variables	 H(X1,	 ...,	 Xn)	 is	 just	 the	 sum	 of	 individual	 entropies	 H(Xi)	 if	 these	 variables	 are	
independent.	However,	it	is	potentially	much	smaller	if	they	are	correlated.	In	the	same	way,	to	
minimize	 language	 entropy,	 one	 should	 introduce	 correlations	 between	 syntax	 choices	 for	 all	
functions	and	objects,	by	way	of	explicit	or	implicit	rules.	The	bottom	line	is	that	consistency	in	
syntax	and	naming	reduces	language	entropy.	

Consistency	 can	 be	 enforced	 by	 naming	 conventions,	 such	 as	 PEP‐8.	 But	 it	 is	 not	 strictly	
necessary	that	these	rules	be	explicit.	A	simple	rule	of	thumb	when	naming	a	new	function,	is	to	
find	the	inspiration	in	the	most	similar	existing	functions.	For	example,	in	Brian,	all	classes	that	
continuously	 record	variables	of	 a	 simulation	are	 called	Monitor,	 for	example	StateMonitor	
for	state	variables	and	SpikeMonitor	for	spike	times.	Compared	to	an	uncorrelated	alternative	
such	as	StateMonitor	and	SpikeRecorder,	this	consistency	saves	1	bit	of	language	entropy.	

This	idea	goes	a	long	way:	it	also	applies	to	argument	names	and	order,	expected	types	and	class	
methods,	etc.	For	example,	all	functions	that	process	spike	times	should	use	the	same	argument	
name,	for	example	spikes,	and	the	type	should	always	be	the	same,	e.g.	a	list	of	floats.	A	positive	
side	effect	of	choosing	consistent	names	is	that,	in	a	dynamically	typed	language,	it	allows	duck	
typing.	This	refers	to	the	idea	that	the	semantics	of	an	object	is	defined	by	its	sets	of	methods	and	
properties	rather	than	by	its	belonging	to	a	specific	class.	

This	 suggests	 a	 few	 simple	 entropy‐reduction	 rules	 when	 introducing	 a	 new	 function	 in	 the	
language:	

1) If	 it	 applies	 an	 existing	 operation	 to	 a	new	 type,	 then	 it	might	be	 better	 to	 extend	 the	
existing	function	using	dynamic	typing,	rather	than	to	create	the	new	function.	

2) If	it	is	a	new	function,	its	name	should	be	similar	to	(or	follow	the	same	logic	as)	those	of	
related	functions.	

3) Arguments	 (or	variable	 and	method	names	 for	 classes)	 should	be	named	and	 typed	 in	
the	same	way	as	arguments	with	a	similar	meaning	in	other	functions.	

	

Equation‐oriented	design	

The	previous	 remarks	were	not	highly	 specific	 to	neural	 simulations.	 I	will	 now	discuss	more	
specifically	 the	 description	 of	 neuron	 models.	 There	 are	 many	 existing	 neuron	 models,	 and	
probably,	 there	 will	 be	 many	more	 in	 the	 future.	 To	 use	 a	 model,	 one	 option,	 used	 in	 many	
simulators,	is	to	choose	one	from	a	set	of	predefined	models	(for	example,	an	integrate‐and‐fire	
(IF)	 model	 with	 exponential	 synapses).	 This	 may	 be	 a	 reasonable	 option	 if	 the	 simulator	 is	
specialized	 for	 a	 limited	 set	 of	 models,	 but	 in	 general	 this	 design	 choice	 increases	 language	
entropy	very	substantially.	First,	one	needs	to	remember	the	exact	name	of	the	model.	Given	the	
modularity	of	models	 (e.g.	an	 IF	model	could	have	exponential	or	alpha	synapses),	 this	means	
either	 very	 long	 names	 or	 ambiguous	 names	 (high	 entropy).	More	 importantly,	 one	 needs	 to	



6	
	

remember	the	names	of	variables,	and	what	exactly	they	refer	to.	When	there	are	many	possible	
models,	it	is	unlikely	that	the	average	user	can	do	this	without	referring	to	the	documentation.	

Another	strategy,	used	in	the	Brian	simulator,	is	to	let	users	define	the	models.	That	is,	the	user	
provides	the	mathematical	equations	of	the	model	(including	the	condition	for	spiking	and	what	
happens	 at	 reset),	 providing	 the	 names	 of	 the	 variables	 with	 their	 units.	 The	 equations	 are	
written	 in	standard	mathematical	 language,	and	 therefore	contribute	 little	additional	 language	
entropy.	This	equation‐oriented	design	considerably	reduces	language	entropy,	because	there	is	
no	more	need	to	remember	the	names	of	models	or	of	state	variables.	The	same	design	applies	
to	spike‐timing‐dependent	plasticity	models.	In	fact,	the	current	version	of	Brian	features	a	new	
class	called	Synapses,	which	unifies	 the	description	of	synaptic	dynamics,	 including	nonlinear	
synapses,	 gap	 junctions,	 short‐term	 and	 long‐term	 plasticity.	 The	 user	 defines	 differential	
equations	 on	 synaptic	 variables,	 and	 operations	 that	 are	 executed	 on	 pre‐	 and	 post‐synaptic	
spikes.	For	example,	synapses	with	stochastic	transmission	can	be	defined	as	follows:	

S=Synapses(source,target,model="""w : 1 
                                  p : 1""", 
                         pre="v+=w*(rand()<p)") 

where	source	 is	 the	presynaptic	group	of	neurons,	target	 is	 the	postsynaptic	group	and	v	 is	
the	membrane	potential	 of	 the	postsynaptic	group,	 introduced	by	 the	user	 in	 the	definition	of	
that	group.	When	a	presynaptic	spike	is	produced,	variable	v	in	target	neurons	is	increased	by	an	
amount	w	with	probability	p.	

Arguably,	 for	 complex	 models	 (e.g.	 Hodgkin‐Huxley	 models),	 this	 equation‐oriented	 design	
potentially	means	very	 long	sets	of	differential	equations.	 In	practice,	the	user	would	probably	
end	up	copying	and	pasting	previous	code	for	e.g.	sodium	channels.	But	is	this	a	great	penalty?	
The	alternative	is	to	look	up	in	the	documentation	for	the	name	and	specific	syntax	of	the	model.	
This	alternative	does	not	save	time,	and	does	not	increase	readability.	

	

Conclusion	

My	goal	in	this	note	was	to	convince	developers	of	neural	simulators	that	syntax	is	an	important	
issue,	 and	 also	 that	 it	 is	 not	 an	 arbitrary	 choice.	 I	 tried	 to	 conceptualize	 this	 choice	with	 the	
notion	 of	 language	entropy,	which	 corresponds	 to	 the	 cognitive	 effort	 required	 on	 part	 of	 the	
user	to	use	the	language.	I	suggested	a	number	of	rules	to	reduce	language	entropy,	summarized	
below:	

 use	obvious,	explicit	names,	with	consistent	naming	and	syntax	rules	
 exploit	dynamic	typing	
 define	models	by	their	mathematical	description	

It	is	tempting	and	natural	for	developers	to	increase	the	functionality	of	their	favorite	simulator	
by	adding	new	objects,	new	functions,	new	models.	This	temptation	should	be	resisted.	In	fact,	I	
suggest	 that	 developers	 should	 follow	 the	 opposite	 trend:	 to	 increase	 functionality	 by	
generalizing	existing	mechanisms	rather	than	by	adding	new	special	cases.	

	



7	
	

Acknowledgments	

This	work	was	supported	by	the	European	Research	Council	(ERC	StG	240132).	

	

Declaration	of	Interest	

The	author	reports	no	conflicts	of	interest.	

	

References	

Davison,	A.P.,	Brüderle,	D.,	Eppler,	J.,	Kremkow,	J.,	Muller,	E.,	Pecevski,	D.,	Perrinet,	L.,	and	Yger,	P.	
(2009a).	PyNN:	a	common	interface	for	neuronal	network	simulators.	Front.	Neuroinform.	2,	11.	

Davison,	A.P.,	Hines,	M.L.,	and	Muller,	E.	(2009b).	Trends	in	programming	languages	for	
neuroscience	simulations.	Front.	Neurosci.	3,.	

Eppler,	J.M.,	Helias,	M.,	Muller,	E.,	Diesmann,	M.,	and	Gewaltig,	M.‐O.	(2009).	PyNEST:	A	
convenient	interface	to	the	NEST	simulator.	Front.	Neuroinform.	2,	12.	

Goodman,	D.F.M.,	and	Brette,	R.	(2009).	The	Brian	simulator.	Front.	Neurosci.	3,.	

Hines,	M.L.,	and	Carnevale,	N.T.	(2000).	Expanding	NEURON’s	repertoire	of	mechanisms	with	
NMODL.	Neural	Comput	12,	995–1007.	

Hines,	M.L.,	Davison,	A.P.,	and	Muller,	E.	(2009).	NEURON	and	Python.	Front.	Neuroinform.	3,	1.	

Raikov,	I.,	Cannon,	R.,	Clewley,	R.,	Cornelis,	H.,	Davison,	A.,	De	Schutter,	E.,	Djurfeldt,	M.,	Gleeson,	
P.,	Gorchetchnikov,	A.,	Plesser,	H.,	et	al.	(2011).	NineML:	the	network	interchange	for	
neuroscience	modeling	language.	BMC	Neuroscience	12,	P330.	

	

	


